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CALCULATION OF POTENTIAL FPLOW PAST AIRSHIP BODIES IX YAW*

By I. Lotz

The calculation of the potential flow past an airship
in yaw is accomplished, according to Von Karman, by divid-
ing the air stream into a flow parallel to the airship ax-
is and one perpendicular to it, after which the potential
flow about the solid of rotation exposed in axial direc~
tion can then be determined by & method suggested by Ran-
kine, The axis of the body is superposed by sources and
sinks and the intensity so defined that the closed strean
surface formed by superposition of parallel flow on this
source-sink flow is coincident with the surface of the
solid. Von Karman (reference 1) pursued an analogous meth-
od for defining the potential set up by the lateral flow,
He disposes dlipolars** on the axis, so that the intensity
of this superposition is again defined by the postulate
that for the fluid motion, produced by superposition of
parallel and df%gfgi flow, the surface of the solid is
stream surface. Both problems yleld integral equations.
For.,gpproximate solution, he substituted & definlte number
of plé@%s with constant superposition for the continuous
superposition, A numerical calculation of examples accord-
ing to this method revealed certain difficulties for sol-
1ds in yaw with not very slender bows, which finally prompt-
ed the use of sources and sinks on the surface of the solid
instead of dipolars on the axis, and to compute the field
of flow by this Agerey. The oxperiencos collected from tho
calculations and which should prove useful for other sin-
ilar problems, form the subjoct of this report.

*Zuf Berschnung dor Potehtialstrgmung um quargesfellte
-Tuftschiffkorper. - Ingenieur-~Archiv, Vol., II, 1931, pPpe
507-527.

*%0n Dipolars and Their Fields of Flow., See Hutte, Vol. I,
26th editlion, p. 364,
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I. AXIAL SUPERPOSITION

A, Partially Constant Dipolar Superposition-

] The axis of the airship is assumed to coincide with
axls x, counted from the bow, Cylindrical coordinates
are introduced so that -

Z =T cos®, y =1 sing (Fig. 1.)

The 'solid itself, of length 1 is assumed given by its ne -
ridian curve r(x). - . . .

The normal_%glécities in%pped on the surface by the
parallel flow in"direction of “hegative axis z, are pro-
portionate to cos . Since dipols lying on the axis of
the solid also set vp on the surface of the solid normal
velocities proportionate to cos Q= angle ¢ does not ap-
pear in the integral equation defining dipolar motion .
This equation rests, as already stated, on the premlse that
the surface 1sﬁstreamﬁ§urface, so that on it the normal
velocity, composed of dipolar motion andTeomponent set up
by the flow, disappears, Designating the point of the ax-~
is carrying the superposition by t*, expressing %% = p!
and W = velocity of air flow, this equation for the ad-
herence of flow to a parallel of latitude with abscissa =x
reads as .
b (e at b at
- J - +3 712 [ B
° Jr2 4+ (x - £)P ° Jr2 4 (x - £)?

1 -
Bt g R(g) (x - £) dés i W (1)

v

o Vr2 4+ (x - E)F

It is known, and Karman also pointed it out in his
summary, that exact substitution of the body by a superpo-
sition on. the axlis of rotation is possi®le only "when the
analytical continuation of the potential function free of
singularities in the outer space of the solid can be ex~
tended to the axis of symmetry without encountering singu-

*The zero point of £ coincides with that for =x,
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‘lar pbints.""Sinée'fhe guestion of when or when not this
continuance is possible, has never been answered, numer-
lecal calculations are apt to have disagreeable sur?rises.

in store.*

With =n s@aeﬂgLof constant 5?%0 ér distribution the
flow adheres only in =n points (control points) of the
meridian curve; that means on n - circles of the oodj pe-
riphery. (Fig. 2.) The result is an n  system of linear
equations for the n. unknown dipolar intensities .-
With the wvth dipol space reaching from & %o fpyy .
(figs 3), the control point x (reference 1) for flow**
adherence is expressed as o

: : g;u Ko, t'A gu +rt Afp] =4mrE W o .-,('2)
i whereby . ' ' S |
o Agu = g(x. eu) "‘~g(xs 61}4—1) ,\L (3)
A f‘u = f(xs gv) ". £ (_xv- €U+l) ’_}
where . g(x,€) = cosd (2 - cos® ﬁ)vl (
: . : . . . 4
£f(x,£) = sin39d ' ) . )
wifh ‘ ' r o
: tan § = ==  (Fig, 3.)
) N 3

Karman has computed the functions g and f and'they

appear as dependent on .- ; . For point x =@, r = &
equation (2) becomes ' : o

1B e
-2-..21:%(2 ""—\-mz"“v/’?""g's“\ 411'W (5)
* Eorr &7 - v+1 |
where m = limit (r r?')
i x— 0 o

S - L e e e

4 "*In the ‘Jablonowski Prize Essay, 1914, G. Herglotz treated
' a similar problem: Analytical continuance-of poteéential into
! the inside of the adhering masses, although the fundamental
;E. difference of the problems makes it impossible to expect

| any explanation.

**xanifested in (1) by 1nsert1ng partially constant super—
rosition .
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m is-a finlte number, because. 1r - ordinarily goes. to zero
as ¢,/ X, Then the product* (r r!'). for small x  is

. a2
C e B,
r r= 21

. 2 .
that is, finite for x-—0 and equal to the radius of the
curved sphere for point x =0, r = O, . o .o

A different method of visualizing the dipolar inten-
sities is to cut the solid parallel to its axis and perpen-—
dicular to the parallel flow and stipulate that the flow
through the outside of this section, generated by the di-
polar motion be equal to the flow of the undisturbed stream
through this area, i.e., equivalent to the section mmlti-~
plied by the flow velocity at infinity. It is not advisa-
ble to effect =n such cuts to define the n dipolar in-
tensities, because the slender forms of interest to us
render the exact graphic analysis of the section difficult
and at the same time becloud the dipolar effect when the
cut is made at a distance r contiguous to rp,x from

- the axis, But it is advantageous to occasionally replace
-one or two equations with such flow conditions in the sys-
tem (2). -

The length of the constant dipolar intensities must
be decided at the very beginning. ZEKnowing  to be about
proportional o r2  according to Von Xarman, the length
of the spacas—&epends on the #&#ens%%?mof 4&#e change of r.

C;ﬂ’will be less toward bow and stern. The major obstacle
lies in the choice of the starting point of the superposi-
tion, whose distance from the bow may be assumed x;. For
the sphere the ratio of x; to curvature radius m 1is =
l, Long extended bodies having on the axis a stronger di-
polar motion, the interference velocities outside of the
body increase conformably to the f;ow condition, which
means a shortening of distance x,.  Consequently, the
starting point must be ahead of the center of curvature
of the bow; for the rest, its seleetion must be left to
experiment,

If a calculation is made first it affords a check on
whether or not point x, has been correctly chosen. If
the surface of the body is reallyasurface of flow tnen
even the higher differential quotients =", etc,, of the

* e )
) ?d-(zz'" . R JRC
(r'r‘):—a;——/; that is, .r.r' = the derivation of the

curve 1 r2 (x) divided by 2 T

. i ||
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‘meridian section of the tlosed stream-surface; produced

by superposed dipolar and parallel flow, must correspond
with those of the ‘surface of the body. We shall see wheth-
er thi the case for the bow, Differentiate equation
(1) ﬁ&%éigﬁﬁég x. and form the;limit for x =0 and’
r = Q, Putting o : . - :

-epu,- ] (5§- ~ ) N O
v+x ‘ .
and
S limit f(:iz +r rt) - lj'='87
x—0 :
r-—0
it manifests _ .
n : '
™y {seaU +.7 m By ~ 5 m2 Bgy }: 0 (9)

The coandition is extremely sharp., It shows that even

. a minor errar ian the selection of x, 1is immediately fol~

lowed by a tangible deviation from zero at the right side.

‘Even an estimate of the anticipated | wvalues may, under

certain circumstances'afford a check on the fulfillmeat of
thiis condition.. The : values drop very. qu1c kly, so
thaet for the balance on?y the first spaces come into con-
sideration, :

The speedy abatement of tne epv values with rising ,
P  induces the.following:  Assuming that very high do¢¥a=aéum£Up
ions. of - the bulknead surface. curve are laown, .it would be

' pbss1ble to compusbe dlrecﬂ?by repeat:n§4d1fferent1a~
-tion :of equation (1) and form

ion of its 1imit for x = O,
r = O after having proceeded far enough so that 6, .
abates rapidly, so that By the flrst term of the sum,oﬂﬁu
need be considered, L : : :

Now the course of the dipolar motion for pointed
stern must be included yet. How close to the tip is the
superposition to extend? It is readily shown that inte-
gral ‘egquation (1) - e SRR o :

B SO S S 1)

° JSrrr x- 02 % iz 8"

}u&>m-z>dz=4
JEw (x - B

W,

-~ 3 r ! ™
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which the dipol motion must fulfill, affords no positive
solution at the right of the maXimum section for rx. r! = O,
which begins in x =1, r =0 as  u(t) =c(l - E?’, _
where A and ¢ are positive figures, It means: the di-
polar motion cannot reach the tip and dipolar motion re~
sults only in an approximated rounded-off stexrx. In a
practical - sense there is, of course, no exact tip, but
merely a poeint of very high, but still finite curvature.
The question of final point of the superposition the=n
would, provided a certain roundness is desired, revert to
the considerations made for the bow. 3But the superposi-
tion toward the stern will be so small that a minor vari-
ation in final point will have no effect on tie total re-
sult (on the moment, for instance).

B. Continwous, Partially Linearly Variable

Dipolar Superposition

Tor not very slender solids the dipolar superposi-
‘tions defined according to the described method are ver)
much contingent upon the chosen space division. (See figs.
5-8,) "This fluctuation admittedly diminishes as the anum-
ber of dipolar spaces increases., But for mathematical
reasons a minimum number is desirable, in order to keep
the order of the resolvable squation system low. These
considerations were the reasons for assuming a continuous,
partially linearly variable superposition in place of a
partially constant dipolar motion., The result was, as
proved by examples to be given elsewhere, quite satisfyiang.

Proceeding from the géneral equation (1) for flow ad-
herence, we first develop the equation system. With

w(E) = ap + byt (10)

in the vth interval, which extends from &, to £,
(fig., 4), equation (1) becomes

. .
4 : 5Pl

n v+ a.,+b n - a,tb,
-~ 5 p*Py £ - af43r2 Tv S L Y

1 e =] 1 £ T

- £ W rEa(xet) v dr;2+(x—£)2

Cow PR £) (x-8)
~3rr! v S r_v - B¢=47rW

* i" Vo or2 o (x-t)3 )
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“or, when writing -

ap + by b= (ay + by X - by (x B)

g ) b . j”“ e
+by x ; =.
z" R ™ S B JreGen®

. IEU'{.-I (x.-E)d-E'.'i n. | Ev.+i (.:.c'-...El)'d‘é e
~Zrp! [ e = BV By | [ e
T Jrorx= ] v "[ 0y e
b | bors o v s |
wore g EZEBEE g T E).f_iHJ =4m¥ (1)
£y «/r2+(x-£) Ev «/-r2+(x-5)

The integrals of the first sum on the left side appear
by Von Karman on page 3; those of the second sum are read-
ily evaluated. Multiplying the whole equation by. r?,
vields ’ ' ' ,

n n , e
v (ap+bpx) [A gu+r! Afp] = TV byr [ - (sindppr—~sin Jp) +
1 1

+ (sin3dpy, ~sin3dy) +r'(cosPppy=cosdPyp)] = 4mr2W (12)

For abbreviation, we wrilte:

Ay (sin3dpy~ sinddpy1) —~(sind = sindpsi) : (13)
A kyp = (cos3Ip~ cos3Hp41),
so that (12) becomes

ZU (aptbyx) [Agv+r' Afv] + Zv bur (Al 4" Alp] =4mr?W
(14)

Carrying the'simplification furthgr,
Ag, + ' &Af, = I,, ' _ N

; (15)
X(Agp + r! Afv) + r (A 'L‘p + rf Akv) = IIU;,(
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Equation (14), which deflnes a, and. b,, assumes the.
form : . ' '
o { e . s -
v (ap Ip + bp IIp) = 4 7 r2 W (18)
2 :
The superposition begins in §, with value ¢. Then
ay=c¢~ byy £, - T i- ' . h

8p = C'+_b1(§2 - El) - by £,

av : 'é+b1 (ga" E1)+b2 (53" E?)_I— . "+bv_—'l (EU"gU—,l.)".bUE_v /

From (16) follows

c Zul 4y {(£2—£ )Eu I~ by L+ 111}

n .
_{(ia—ie) ToI,- b, Lt IT}
' 3

S T : (18)

+bp- {(En“gn—l)In"gn—lln-1+IInr;}

+bn { A A N A

“which is the equation system for computing the (n -+ 1)
unknown factors e¢; by...b,. For the point x =0, r = 0,
the relation with the notations of equation (8) is

n ' . '
20 { 2y (8o ~Bm0, ) +byy (B ~Bmb5 ) } =am (19)
Putting :
951; -3 m eav = III:D,
. (20)
e'lv - 3 nm %U = IVU . J .

reveals for point =x =0, =0

11
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c Zv' LIT, +by {’(Ee—gl-) Zu-'.IIIv" £, IIT, +IVi}'
1 '

b {anta) 3 Po TIn,- g, 1IL, 4y, }

+nl-..";.".nlsa.‘n---cn--n--l.uo.o.-o..c--.

n—;-{(gn En_ ) 111 abney III 0 +IV, }
+by { o o =by IID +IVn} =4mW (21)

It should be obser%ed; when“carrying out the calcula~
tion, that the functions..g,:f, k, 1 are the same for all

. ) . - * .
bodies dependent on E—;—L; or, in otner words, construe

k¥ and 1 in addition to g and f as in the Karman method.
The .development of equations (18) and (21) takes somewhat
longer than when assuming partially constant dlpolar s~
perposition,. but the decidedly better results: by less num-
ber of spaces compensates for this drawnac

:UC. Examples for. A and B,

.To illustrate the preceding expositions there follows
a compllatlon of calculated dipolar superposition for bod-
ies which in axial flow are to be substituted by_s1mple
singularities on their axis, The body conteur is indicat-
ed and the uamputed dipolar superposition. vlotted in units
of the superpossition, which corresponds to an 1ndef1n1te1y
long cylinier of ‘diameter (2 R) of maximum cross section
in a transverse flow, Designating the plotted values with
e (t), the Gipol moment Ww(f) is given by

n(E) = 2 m R W o (k)

(W = rate of flow): - The abscissas of the utilized control

.points are shown by Xls,.

*The!fuﬁéﬁiﬁﬁé"g, f, X, 1 were omitted hvere because of
the limited space for the scale, and the comparative ease
with which the functions can be plotted,
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1., Figure 5: a: body w&1ch is produced by a source
and sink of gbsolutoly equal yleld in a flow parallel to
its connecting line, The yiold in rolation to the axial
rate of flow is so proportioned that the maximum diameter
equals 1/5 of the distance of the singularities, Bow and
stern have the -same -shape, so the bow is shown only., It
is readily apparent from Figure 5 that the starting point
of the superposition’ was chosen too far away from the bow,
As a result of its too remote distance from the bow the
superposition of the first spacing is very large and, in
order to neutralize its effects on the other parts of the
contour, a negative superposition must ensue,.

2. *1gure 6 body produced as in Figure 5; yield of °
source and sink such as to make the maximum dlameter equal
the spacing of the singularltles.

a) The number of dlpolar spacings is 1nsuff1c1ent

b) and c) Partlally llnearly variable. steady dipolar
superposition assumed. In case c) it stlpulates compli-
ance with differentiated limiting conditions (compare page
5)., Note that the fluctuations of the superposition in.
a) a§e;perfect1y in accord with rate of superposition
b), ¢).

.3, Figure 7: Fubrmann (reference 2) shape No. IV.
(The sketch shows the source distribution producing the
body in axial flow,) The minor negative dipolar superpo-
sition .adjacent to the bow is most probably due to not
quite exact selection of starting point of superposition,

w4, Fuhrmann shape No. 1. This body has a very blunt
nose, The dipolar superposition is computed in three
ways. . Because of the slight effect of nose and stern in
very slender bodies the dipol superposition can, so to
speak, be effected for two semi~bodies*, For this body ’
the dipol superposition, computed according to Voa Karman's
method, manifests unusual fluctuations at the bow (a).
For that reason tae equations, giveéen by the postulated ad-
herence of flow in the first two coatrol points, were re-
placed by two flow conditions, which -abated the fluctua-
tions very materially (b). In Figure 8c the starting
point is much farther away from the nose which, being very

*The mianor mutual efféct can be accounted for by iteration,
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blunt, causes the same phenomena as in example 2

As. concerns bodies with blunt nose, the iteration of
the partial equation system for the nose is impossible.

II. SUPERPOSITION ON THE SURFACE

A.eDevelopment of Integral Equaﬁion:for
Surface Superposition and’ Its Reduction to a

Unldimen31ona1 Integral Equatlon

The hesitation voiced at the beginning of this report .
against substituting for the body a dipol superposition on
the axis, added to the experience gained by computing the
cited examples, induced me to apply a different method Tor
defining the potential & of the transverse flow around a
s0lid of rotation, 7Using the same notations as before,
nanely, =x = axis of body, 2z = negative direction of par-
allel flow, which is perpenhdicular to x, apd  y = direc-
tion perpendicular to 'x and z,4{¥potential @ is defined ;
as follows: It must satisfy the potential equation Ad =
0, it must act at infinity as (-~ W z), and on the sur-

face of the' body 52 must be = O .{(n = direction of the

oubtside normaﬁ Then resolve ¢ into ®, and & , where
by . s .
d, = -~ W z, On the surface gé} = - W %%. This fulfills

the conditions for o, @2 must disappear at infinity and

o, oF

Q\MM)—&.RJ—(
the normal dexriwatieon on the surface ig =2 + W .
dn dn

The problem thus resolves to defining ®z. This potential
was approximated in the Rankine-Von Karman method by the
dipol superposition of the body.axis, But, conformably to
the theory of mass Dotentials, ®, can equally be repre-
sented as potential of an elementary source-sink superpo-
sition £ @spread over the surface of the body.. On the
premise that the body everywhere has a- defined
tangential plane, that'is, no.cusps, this’ superposition
can be expressed by (reference 5) KVmsd

2w £(x,y,2) + [ £(t,m,¢) 22 ¥ a6 = wOE ° (23)
S R~ . on
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Here s, -surface of body. R
d0, = surface diffsrential at pqinﬁ 'g!,n, C;'
¥, angle between connecting line of fixed sur-
face point P(x,y,z) and running point

II(¢,m, ¢) with the normal in point P(x,y,z).
(Compare fig. 9. ) .

R, distance of fixed from running point,

The body being symmetrical in rotation, cylindrical
coordinates are introduced; '

fixed_point P: r=,/za4§;, z=r cos @., X,
running. point IT: P=A/§2+n2, (=P cos o9p, ¢, (23)
so that (22) becomes, _
N o cos V¥ W cos @
2t (x,7,0)+ f £(£,P,9p) —— do = = (24)
S B PPN
. A /1 +(4z
’ _ o dx)
dditi it ; itt ar ! ap pr, Ext t
i w © - = = 4 1
In addition it is wri n ix rt, EE x_rapola ion
then yields from the geometrical relations shown in Figure
9, . _
. rart (x=£)] ~P cos(Pp=0 ) v 14p12
cosvdo= + L ( ] = (9r=9p) PaPpat NEETSEE (25)
and, with 1 = length of body,
lam vt (x=§)] -P cos(Pn~%p)
_2ﬂf(x T, 05)+ ftf f(i P »@p) L = B
: l_;.ﬂ)ﬁ W cos O
X p a Cpp d-b O (26)
J 1+r1® /1+1"2
which, abbreviated, yields: |
(x - £)° + 22 + p2 = cc2,1
+2zrp =K, r S (27)

]
>
““

Pr - @p
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80 that

- B® =(x —-VE_)Z + r2 + P2 - 2 r P cos(9r -~ @p)
= a® = k® cos(Pr - Pp) = a? - k? cos X

It is readily seen that £ (x, T,Pp) must be propor-
tional to W cos Qp.. Consequently, with ~

£(x,7,9,) = £2(x,r) W cos @p,
a few c_ha_.nges'resul't in N '
lam

Zﬁf (x, 1‘)+ f_[ £° (E,P) {{r".r'(x—ﬁ_)}“/ cos X. .- o
C . a®

- k2cos X

: c@s;' X 14pt?
X P aArdt —= (28)
A/de W cos X:] ‘/A]-‘l'l";3 «/—+r' _

In this integral eguation the integration can be ex~

"tended over A. It is necessary to define
2T é
cos X
o ./ g® -~ k® cos X®
and
‘ 2T cos?® X -
Jg = [ ax : - (80)

o ./ a® - k® cos X®

These integrations lead, after a ﬁﬁmber of transformations,
to elliptical integrals. Putting (reference vy

X 1 - %@ ' 2.4t
tan = = ¢ cos A = —————m= dX = =————n
2 ! 1+ 857 1+ ¢t
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AP VS S VI
VaPr k2 L o i+t 2B 4t2 a®+K2 0 ~/1+t2~/>\2+ta

- (% . 84a? )f“ 4t
° Nt afae® ke o/ P4k’ 0 J 1+t2 ./ NP 4e2

4 (1=R) o+ = a t a2/ Erre T at/Ie+tt2
g — f + f N

Jarx? x 0 1482/ 2 4 K o ./ 1+t®

Moreover, the introduction of

2
2 =9 —T0 . ana KT =1 N
: 1 -7

results, when X denotes the complsete elliptic normal in-
tegral of the first category, and E that of the second,
4 2
5, = ¢ [ % 5a%) - xad)
© k¥ aRk? [ al-k? '

-

a? ' 4
Jg = == J; + ——————— [(a®+k®) E(x®) =~ a® K] .
K # /a2+K2 :

For the sake of simplicity, we put

L e ), | (29a)

k23,/ a®+ k>

4.

Jp = — g

[61(k2) + 82(k)], (30a)
k2 Ja2+K2 ' ' : ' .
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that is, ° . )
. . . a3 :
G, (¥®) = %2 m(x?) x)= L 3-5- B(2) K (31)
a2 =~K=2 2 1-K°
2 P
Go (kz) = ?ET&%-L E(l: ) _C_I'.E.._.E_ K(ka)

= 3 {E(k2 - K(kz)} {E(k2)+ K(kz)}
=2 ._.1?;_ .{E(k. )"..'1.1(1:_)}4 {E (1:2)1-'1{_(1:2')} 2'52)
Then (28) becomeé | N

2nt® (x,7)+ 2 f £° (g.p) {? (k) [-r!(x—g)+(r-pﬂ ~PG2 (1)}

R4 a2+K2

1+p'2 a E = . .l. — . (33)

14r1? VETTTLE ' S

In this manner the two-dimensional integral equation (22)
has been reduced to a unidimensional one, with nucleus or

core.
. = 3 ___l___ al'_ -~ -~
K(x,73E,P) = 2 = {ea () [-x " (x=) 4 (2=P)]
2 14+p1?
L A e (34)

_ This cors K 1s examined more closelys It contains
theWhgxgblons L(X¥®)  and Gp (k®), which are aggregates
of elliptic normal integrals, Both become infinite
for Xk®-—>1, Therefore, it is necessarg to examine the
"behavior of the core ‘in the vicinity k7 .= 1 .more. close~

: ly. Conformably to the assumptions made preV1ously, a reg-
j ular fixed point x,r is stipulated (points x =0, r = 0O
i and x =1, r = 0 are excluded for the time being). The
term

. ka-= 1l - N o= 1 - 2 K:
TR T e
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goés;'when denoting (£ - x) by - £°, toward 1 as
. !2
1 - €2 £8°, where - ¢2 = 1tz \ so long as
. . - T * RN ___' . 4 r2 - . .o
B , 82 T ern” - g - _ -
4 §>'max‘ T?e ter? [~ (x £) + (r P)] goes to
ward O as ~ E— g°%2, '.;

2 -
Since’ K(ka) for s 1 goes infinite (reference

r [T o : -
B) as —L}n __l_Z_E_..,' E(k®) ‘remains finite, and [limit
. 1 2
E(x®) = 1] , it is | : | -1

— r" _ _.r"r2

limit Gy (k2) [ ~r! (x=8)+(r=P)]

S x?.q - 4 €® 1412
- and : - : (35)
1imit P Gp (X®) = 1limit ¢ [3+1n @J
k2 >1 S kRl -

c—

Thus; core K(x'r‘ﬁ P) goés for k21 or (-0

e o
to infinity as 1n . E—lﬁ—— y that is, it is integrabdle.

4 .
For the points x = 0, r=0 and x =1, r =0 Xx2(£)
is = O, as far as point §{ =0 or ¢ =1 itself, where
¥ = 1; that is,” K(x,r;£,P) = O for all points outside

of the fixed point., Conseguently, the integral
] ,
J E(x,riE,p)£% at

vanisiaes for these points. The stern of an airship is usu--
ally pointed, obviating the necessity of deliberating
whether the limitation imposed previously can be removed;
but, as a matter of fact, it cannot, (Reference §) Fron
the practical point of view this is of no significance,

.-since the stern of an airship has .no mathematically exact

tip, but 'lerely -a point of very pronounced but withal fi-
nite curvature.

Thus, abbreviated, ,as on the'pregedihg pége, the in-

tegral equatlon becomes

[

o v liri®

*The subscript "max" is to indicate 'the maximum for ¢°
at which the interpolation formula is still wvalid,
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or- £9%(x,r) = = i L e oyE(x,ri 'p)a'e (37)
2w v 1iriz - 21 o ~
To resbi%e it the welluknown iteratlon method is exped1~
ent, Choose as Oth approxlmatlon o
f.g (x,r) _=

IV + r'8 j

define with this,:fg. the 1ntegral

£ gate j:t‘ Kat

and thus compute the first approximatldn fe The inser-
tion - of this value into the integral ylelds the second -ap-—
proximation, etc, The convereence of the method is as-

sured {(reference 7), because fo(x r) is flnite;¢%ucleas
E(x,r;E,P) is 1ogarithmlcally infinite at one point only

and 4= is less than 1; £%(x,r) i given by a serles of

rising powers of l/w. M=boormes en

./ + P17 g® (x T; & Py -+ #(38)--

'-‘K ., Y e
_(;;rﬁ ) = rﬁ+r'2

and
A ' . :
PI'J. (X,I‘) = f "—E‘E"Q' I_C_e (x,r;i,p)dﬁ (39)
)
is 1n1t1a11y put*. w ith.
1 o .
Pi(x,r) =/ E°(x,r;t, p)d ST (a0)
7 ' . o ' ‘
. o p, (x, ) B (=) By (x,r). |
£ (x,r)=f0(x.r)—_ -y '+{ — .-:+..l
(41)

*For r = 0, see preceding page.
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- B. The Practical.Solution of the JIntegral Equation

_ a) Numerical definition of core function.- The most
time~consuming part of the solution is the definition of
the nucleus or core K (xy,r3;t,P) for different. fixed
points (x,r) of the body. The functions G, (k®) and
G, (k®) being aggregates of whole elliptic normal inte~
grals, are so plotted against k®, as to be accessible,

It should be romembered that both functionsso for X —»1,
. G (¥®)" bocomes logarithmically infinite, that is, compar-
‘atively inferior to G, (k®), which approaches infinity as
-l*m?. For morc. oxact reading, it is therefors advisabdle

" %o plot tho function H(XE) = (1 - k%)@, (¥) for. k¥ val-
ues contiguous to 1, which romains finite for kf-—1,
Then mark off H(Kz) for a prodetermined k2 and divide

this value by (1 - ke), which yields

G(ka)—i_(lifl.

B k2

Figures 10, 11, and 12 show the course of Gi(ke), (k%)

and Gg(ka) The calculus for a predetermined body then

“begins with the determination of the "form factor" Ik3(x,
r3t,P)  for a fixed point (x,r) (fig. 13):

a?=k2 _ - (x=f) + (r=PF __ r§
La(x r;f,P)=1- o = =1 R S 1 ;E (42)

k®  can be computed by measuring off the distances
ro and rye It was found, however, that the purely nu-
merical determination takes about the same time and yields,
of cou;se, more accurate data, especially im proxlmlty of

(x r)

*lc iS‘tﬁen written in the form of

1+(I"-p\’“'
\X-—_-

EE
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. Without mathematlcal term glven for the contour, the
calculation of :

Q(erP)—[(r~P)—r(x~§)]

offers serious obstacles.

This term Q stipulates very exact knowledge of the
tangential direction rt = %; (fig.-14), and of the'éep-
ond derivation r", in order to define the limiting value
Q Gy (k®) for k®-—»1, 1In Figure 14 Q corresponds. to
distance AP, It is readily apparent to ‘what errors any
inaccuracy in ' of say, 2 per cent, can lead on a long,
slender bodye. The absolute error of Q grows proportlon—
ally to (x - £). Of advantage is it that k® is very
small (G, (%) also) for large (x - £). In close proxiin
ity of x, however, - that is, for small (x - £), G,
(k®) assumes very high values, so that relatively minor
discrepancies in Q have a.pronounced effect on

E(x,r;E,p) = % ;L {G'l Q- P Gz }/‘“Lp:e-
. 14

because of the existing differsnce. If the meridian curve
of the body is given empirically, a very careful determi-
nation of the first and second degrivative of r 1is abso-
lutely necessary.. In a given case, it is necessary to

again integrate* r% and =r! . obtained by numerical dif-

' ferentiation, to ascertain whether the initial values

r(x) are attained again ~ within the permissible. limits,
If it results in an inadmissible discrepancy Ar(x), it
is poesible in most cases to approrimate it by a simple

‘algebraic function and in this manner effect the necessa-

ry corrections on " and 7,

b) Treatment of point of discontinuity of the core.-
After computing the core for a number of fixed points
(x,r) . the integral Pp(x,r) can be determined. The core
being logarithmically infinite for £-~>x or k°—»1,
integration is possidble .in interval Af{ also, which con-

~ tains " x, provided . f remains finite. - Whereas the in-

tegration can be made graphically (or planimetrically)

*The integration of empirical functions is admittedly much

. safer than the differentiations as calculation method,
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outside of this interval, within this critical 1nterva1
it must be achieved numerically. (Figure 15,) The »nlot
shows the curve for X(x,r;{,P). Assume the graphic inte-
gration is made from O 'to X - Axy and from x:+ Ax,-
to 1. The choice need not necessarily de lﬁXr_— Az,
but for expedlency, we assume it 13,'and express it as
A x, Then the integral
x+Ax .
L= f pu(E,PE®(x,r3¢,P00E - (43)
x-AxX - -
must be computed, Herein

Pl(i,P) =1 ~ for computing P, (x,r) 3.

A . , ' } (44)
P P)- :

P, (£,0) = _.1-...(.%_’.,,_)_ " 0 . B2 (x,r) etc.)

For K° its value is written:

+Ax . .
I ~xf f—(—gw{% (3) [(r=P) =r'(x-§] =P G2 (kz)} at .

x=Ax G.2+K.
-fﬁr ¢t —>x, _
6, () [(r = 0) = 2t (x = §)]
remains finite, as shown elsewhe?e;ﬂthus integral
_ fx;'—l-/_\x |

Ly x.{W fd;ﬁ? P (62101 (%) [ (z=P)=rt (x-6)] a4 £ (45)

can be graphically'determined. There remsins
x+AX

La= [ i m (0,0)PGADAL . (46)
x-Ax o/ a®-K= :

Slnce Go (k2) approadhés infinity as 1n 3C%=§i
when Jz——>1, we put : '
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] Ty
G;(k%)';nn(ka) f”4~5 £ q1n ~/1_k2

ke a
The function | i )
= . J1 w2 la_ 2 o
NGy =m(e?) £E Lx(ke)+1n Lk {4 e 1)

remains finite for {k?~ﬂ-l.““(Tigure 16.)
Integral Lz resolves itself to

Ly = Ly, + Lzz + L33’

with- . . _
LT . CxHAX 1 . . .2 :
L2y = [ et pp(¢,P)P N(K7)d € (48)
x-Ax ./ Q2 +K= '
B . 47 p %
and, taking into account that k% = —m———-r
- a® 4 K
X+Ax .
4-3 k 1=\
Lyz = S Fpn(i P)-pn(t r)]A/ ( - 1n. =jat
V% x—Ax /
_ - (49)
and i
x+Ax _
pp(x,r) — 4=3 k2 [1.%2
Loy = ’2;—:ET— -[ V[b —— 1ln A a ¢ (50)
B/ T xaAx k 4

Lo, and ILgp ‘are to be defined graphicélly}' THe
integrant of Lz, remains finite, provided p,(§,P) 1is
a continuous function., For expedient evaluation function

" (5;?

is constructed., (Fig., 17.)

Integral Lza is numerically interpretedq Develop--

- ing - . . - . e
k.z = 1 e 2 532 +§'Y ge +'QI'_'I . 1 .
o 27 s £ IO
PPV p - = .+ _r.' . Ee + r'.l . —2 +§ 1‘“‘ "-é"'— + . L J (52)

*Follows from easy extrapolation of equation (42).
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Yields
-4 - 3 k° 2 83
P ST —«/ (1+B1 £°+52 ¢ +§53 Zee) . (53)
where 536_ _ ozt \
1 2r
.
. ' t
= 3,5 € +'[£...,... L (7.-'_. : (5
Pa - L4r 8 \'r r (54)
. ;
Bs = 3.5 5=¢® -~ 3 Y
i .J
As a rule we stop after the term with Eez and use
the term of the 34 order to estimate the error, Stopping
after the terms of the 24 order manifests for Ly, (50)
x+Ax ' ' e
, Py (z,T) 2 £ P!
Lag = nz :Z S (1+4B, ?+@2£§,)1n ——Eé“ &g =

x-Ax

B ; |
= Axp, (z;,r) L(1+ %:-Axa)ln ;} +(1n A x-1)

-

B Ax2(1m Ax o 1y
Ax (1:1/3&--3)‘i

Bz
T3

The inclusion of the terms of the 3d order in (52) would
Jleld a correction of the order of

Az

St

== + B3 -

- Axpn(x r) 2€3 (B;

In thls mannor a re:erenca p01nt is obtained for the se-
lectlon of N xe

c) Examp;es.u The development of the formulas for com-
puting the, surface'superp031t10n was followed by various
111ustrat1ve e?amples in order to check the utility of the
method: . :

1. By a solid-of rotation produced at distance zfmax
" by a source and a sink,

we put

*For computing this correction,
R s S I
ln /1 c2 4 P 4
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. Rw. By Fuhrmann body No. Ive
3, By Fuhrmann body No. 1.

The last was chosen because of its specially inconvenieant
aspect when comput1ng the axial superposition.

- The different approximations of the function of super-
position f£f®(x,r) have been reproduced in Figures 18-20,
The convergence of the method is seen to be gquite good,

In example 1, the single correction has always the same
prefix throughout the entire body length, so that the er-
ror caused by the alternating prefixes of the corrective
terms (41) is readily estimated, The first correction,
of course, produces the principal change in all bodies.
Compared to the first calculation of the core, the deter-
mination of the higher approximations presents few obsta-
cles, TFor examples 2 and 3, the corrections change the
prefix along the body -~ an effect of - the almost conical
stern, This change in prefixes is by itself unfavorable
for the convergence., However, it being superior for slon-
der bodies to that of example 1, the significance of change
in prefix is withal subordinate,

C. Galculation of Flow

a) Tangential ve1001ty on the surface of the body.

"In practice it is important to be able to compute the

pressure on the surface of the body, which means that the
velocity must be known at every point of -the surface., The
velocity is divided into its components - normal and tan-
gential, .The first, induced by the superposition of the
rarallel flow in direction of negative axis =z over the
source flow, is zero. The second.is divided in a point
(xyr,p) .into components w, and w, at right angles to

one anothero_ Component - w, - clings to the parallel of lat-
itude in direction of the tangent, component -w, in direc-
tion of the tangent of the meridian -through point (x, r,w)
(Fig. 21.) " is figured positive in direction of gzrow-

" ing angle - ¢; w, - 1s,valid ag. positive when pointing from

nese to stern., Now, let £°({,P) denote, as before, the
surface superpositlon conjugated to v91001ty W =1l, It
results for w, and w, in®
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W= W osin @ [1 4 /f [ J1 o+ pf’?-
' : ' 1+ r'
VL Gs(kz) atl .  (55)

vfdz + k=
wnere

G (k) = «-{(2 - E%) K(®) - 2 B} (56)

(flg. 22) and

et + 2

W1+ /1 +rt?

TL ' _wé W cos¢ i

R o
x 7 f (E p) Y1 + 9'2 - &) + rt(r --p)
o N IOER \ ' ' -r i >

X G, (K°) - p r? Gz (k2)] @ E} (57)

Gs (°) is logarithmically infinite, the integral in

(55) therefore finite, Note, when evaluating the integral

of  (57) that, whereas Gz (k°)  is logarithmically infinite,

G,(x®) is as* 1 = 1 5 . On the other hand, since
1 - k° e® 87

Qe = (x=t) +-r.'-(r-P) = - (1+r"ﬂ")‘z’;:e - %P- ﬁee + ’..'.

clianges its prefix for % =0, Q% @, (x®) ‘goes, when
proceeding from the left on x, toward + «, and toward
- when approaching x from the right. _The integral

| } £® (E p)J 1+ pt2
o Wu?r KT

.must therefore be expressed by its_"principal valuel

- Q% @, fk )d ¢
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- -8 e = —
limit }.t/. fe(E;P)ﬁ<+TP'2 Qe‘G-,_.,(kzj at -

'6—?0 o W/ aF ¥ Re
1 e v N | o — . ‘ )
vy BRI YL 3 P17 ge Gi(k"-)-.dﬁ}
x+8 e i +~K2 .. -

Another point to be noted with w, is that the inte-

_.gral for points x =0, r=0 and x= ¥, r = 0 does
" not disappear (in contrast to the mnormal component set up

by source superposition alone). It'is”best-to:défine_the
integral for this point.separately, foregoing the reduc-
tions, which lose their significance because k°® id al-

ways zere up to one point, Tangential welocity W set

up in point.. x = 0, r = 0 by source superposition is in
direction of negatlve axis % -and known in magnitude by
(fig. 23)

+12 1 £2(¢,P)cosy
RQ

& s1na./1+5!2d€ coscpp P9, .

B '
1 fe 2 / 12 +
2% f (£,0) P2,/ 140 it [ cos® ¢p de
R

o -T7/2

R N LN e . (58)
o R

wherein R = /Ee + p=,

b) The potentlal in_any point of the space.~ This is

~glven by

<I>=--4Wcos~Pffe(£ ) VI _"

v a2 + Kz

Gs(kgfp at o (59)

G5 (=*) Dbeing the function defined by (58).

Note, ‘that., k° = 1 —(5%\ is always ° 1, when com-
/

puting the potential in points outside of the body. As &
result, no discontinuity places of the integrand appear,
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SUMMARY

An outline of Von Karman's method of computlng the
potential flow of alrshlps in yaw by means of npartially
constant dipolar superposifion on .the axis of the body is
followed by several considerations for. beglnnlng and end
of the superposition. Theén-this method is improved by
postulating a continuous, in part linearly wvariable di-
polar superpos1tion on the axls.

The second main part of the report brlﬂgs the calcu—
lation of the potential flow by means of sources and sinks,
arranged on tne surface of the airship body. The integral
equation which zusp satisfy this surface superposition is
posed, and the <oms reduced to functions developed from
whole elliptlc normal integrals. ~The functions are shown
diagrammatically. The integration is resolvable by iter-
ation, The consequence of the method is good, The for-
mulas for computlng the velocity on the surface and of the
potential for any point conclude the roDort. :

Translation by J. Vanler,
National Advisory Gommlttee
for Aeronautlcs.
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Figs.

Fig.s 9 Notations for surface superposition.
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Figs. 19,20
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